Stabilized mixed methods for the Stokes problem

نویسندگان
چکیده

منابع مشابه

Analysis of Locally Stabilized Mixed Finite Element Methods for the Stokes Problem

In this paper, a locally stabilized finite element formulation of the Stokes problem is analyzed. A macroelement condition which is sufficient for the stability of (locally stabilized) mixed methods based on a piecewise constant pressure approximation is introduced. By satisfying this condition, the stability of the Q\Pq, quadrilateral, and the P\-Pq triangular element, can be established.

متن کامل

Stabilized wavelet approximations of the Stokes problem

We propose a new consistent, residual-based stabilization of the Stokes problem. The stabilizing term involves a pseudo-differential operator, defined via a wavelet expansion of the test pressures. This yields control on the full L2-norm of the resulting approximate pressure independently of any discretization parameter. The method is particularly well suited for being applied within an adaptiv...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem

In this paper we obtain a priori and a posteriori error estimates for stabilized loworder mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 1988

ISSN: 0029-599X,0945-3245

DOI: 10.1007/bf01395886